就算是核聚变成功了,人们也不能脱离太阳系,毕竟就算是核聚变功能的太空发动机,速度也不可能很高,千分之一都达不到,面对以光年计算的星际距离,只能望洋兴叹。
众所周知,时间是可以压缩的,速度越接近光速,时间就被压缩的越厉害,比如飞船的速度达到接近光速,那么这个时间就很奇怪了。
飞船航行一万光年时间,或许里面的人只感觉到几天,而飞船外面的人看来已经过去了几万年。8
飞船里的人感到的时间是一定的,不会有任何感觉,钟还是一秒跳一下,只是他被观察到的时间可能是一天跳一下,甚至是几年跳一下。
对飞船上的人来说过了1天,但是相对于观察者来说可能是几万年之后了,飞船已经飞行了几万年时间。
而飞船上的人没有任何感觉,当飞船以近光速在宇宙航行1年后回到地球,可能地球文明都已经灭亡了,时间已经过去了几亿年。
穆谨的二级文明就有这个例子,一千年前,曾经有一艘宇宙飞船搭载最新的发动机,可以保持飞船一直加速到接近亚光速,但是这艘飞船飞出了星系没有停止,而是一直飞,直到再也看不到踪影,如今估计已经飞到了上千光年之外了,万万不可能回来。
这都是题外话。
太空探索最重要的任务获得星空的资源,尤其是地球的稀有矿产。
稀有矿产的重要性不言而喻,在现在的科技体系中具有不可替代的作用,已广泛应用于电子、石油化工、冶金、机械、能源、轻工、环境保护、农业等领域。
稀有矿产在材料领域作用巨大,可生产荧光材料、稀土金属氢化物电池材料、电光源材料、永磁材料、储氢材料、催化材料、精密陶瓷材料、激光材料、超导材料、磁致伸缩材料、磁致冷材料、磁光存储材料、光导纤维材料等。
地球上的稀有矿产储量稀少、开发难度大、成本高、有的元素只在特定的地区有少量矿产,严重制约了地球科技的发展。
比如铑,这是一种银白色、坚硬的金属,具有高反射率,铑金属通常不会形成氧化物,即使在加热时,在大气中的氧在融化中被铑吸收,但在凝固的过程中释放氧气。
铑的熔点和密度比铂低,不溶于多数酸,它完全不溶于硝酸,稍溶于王水。
铑可用来制造加氢催化剂、热电偶、铂铑合金等,也常镀在探照灯和反射镜上,还用来作为宝石的加光抛光剂和电的接触部件。
因为不被氧化的特性,光学性能极好。
如此重要的元素,在地球却极度稀少,比黄金贵了不知道多少倍,不过太空中有些陨石拥有丰富的铑元素,这就是太空采矿的价值所在。
比如月球,月球矿产资源丰富,由于月球没有空气,更没有氧气,没有地球上的那些氧化作用,这种环境非常适合进行活泼金属的冶炼。
也就是说,如果将金属冶炼出来放到月球上,那么这些金属就可以避免氧化,可以长久地保存,而且一直以金属形式存在。
月球上主要的物质就是铁、钛化合物形式存在的金属,钛铁矿的资源储量高达1500万亿吨。
众所周知,地球上练出钛金属很不容易,但是月球上就可以很容易大量获得钛金属,钛金属适合运用飞行器上。
地球由于成本的问题,一直得不到大规模运用,如果在月球建立工厂,钛就可以大规模低成本使用。
钛合金具有质量轻、比强度高、耐腐蚀性好等优点,故被广泛应用在汽车工业中,应用钛合金最多的是汽车发动机系统。
利用钛合金制造发动机零件有很多好处,钛合金的密度低,可以降低运动零件的惯性质量,同时钛气门弹簧可以增加自由振动,减弱车身的振颤,提高发动机的转速及输出功率。